3. M. I. Vozlinskii, in: Summaries of Reports of Third All-Union Scientific-Technical Conference on Applied Aerodynamics [in Russian], Naukova Dumka, Kiev (1973).
4. G. A. Watts, Univ. Toronto IA TN, No. 7, Toronto (1956).
5. R. Cassanova and Lin Wu Yong-Chu, Phys. Fluids, 12, No. 12 (1969).
6. V. A. Sukhnev, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1973).
7. B. G. Semiletenko and V. N. Uskov, Inzh. -Fiz. Zh., 23, No. 3 (1972).
8. G. I. Averenkova, É. A. A shratov, et al., Supersonic Jets of Ideal Gas [in Russian], Vol. 1, Izd. Vychis. Tsentr. Mosk. Gos. Univ., Moscow (1970).
9. C. H. Lewis and D. J. Carlson, AIAA J., 2, No. 4 (1964).
10. G. F. Glotov and M. P. Feiman, Uch. Zap. Tsentr. Aero-Gidrodin. Inst., 2, No. 4 (1971).
11. E. I. Sokolov and V. N. Uskov, Inzh. -Fiz. Zh., 24 , No. 3 (1974).

GENERALIZATION OF THE CLASSICAL RAYLEIGH
EQUATION TO SEVERAL NON-NEWTONIAN LIQUIDS
V. S. Novikov

UDC 532.528:532.529.6

Equations are derived that describe the change in the radius of a spherical gas inclusion in the Bingham, Ellis, Reiner-Rivlin, Shul'man, Kapur-Gupta, and Oswald de Vielle non-Newtonian liquids, as well as in a power-law liquid.

The Rayleigh equation for highly viscous liquids with a finite relaxation time of elastic strains was obtained in [1]. In the present paper this equation is extended to non-Newtonian liquids, for which the rheological equations of state known to the present author are being extended.

In a spherical coordinate system the equation of motion, including strain and the continuity equation, are

$$
\begin{gather*}
\rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}\right)=-\frac{\partial P}{\partial r}+\frac{\partial \tau_{r r}}{\partial r}+\frac{2}{r} \tau_{r r}, \tag{1}\\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} v_{r}\right)=0, \tag{2}
\end{gather*}
$$

if the bubble center is considered to be testing in the liquid. Integrating (2) with respect to r from the bubble radius R to infinity, we obtain the radial velocity of motion of the liquid $v_{r}=\dot{R}(R / r)^{2}$, expressed in terms of the drift velocity of the surface \dot{R}. Here and elsewhere, the dot over R denotes differentiation with respect to time. Substituting v_{r} into Eq. (1) and integrating it with respect to r in the limits $R-\infty$, we obtain

$$
\begin{equation*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{R}-P_{\infty}+\left.\tau_{r r}\right|_{r=\infty}-\left.\tau_{r r}\right|_{r=R}+2 \int_{R}^{\infty} \frac{\tau_{r r}}{r} d r \tag{3}
\end{equation*}
$$

where P_{R} and P_{∞} are the pressures in the liquid an the bubble surface and at infinity, and ρ is the liquid density. As P_{∞} one can take the external static pressure in the liquid. The relation between P_{R} and the static pressure in the bubble P_{0} is established by the Thomson relation

$$
\begin{equation*}
P_{R}=P_{0}-\frac{2 \sigma}{R}-\left.\frac{4}{3} \mu_{0}\left(\frac{\partial v_{r}}{\partial r}-\frac{v_{r}}{r}\right)\right|_{r=R} \tag{4}
\end{equation*}
$$

where σ is the surface tension of the liquid. As μ_{0} for non-Newtonian liquids, one can take the slope of the stream curve for small shear stresses (see [2]). The relation between the components of the strain tensor $\tau_{i j}$ and the components of the velocity deformation tensor $\dot{e}_{i j}$; i.e., the rheological equation of state, depends on the type of specific non-Newtonian liquid.

Institute of Technical Thermal Physics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 4, pp. 677-680, October, 1978. Original article submitted December 5, 1977.

$$
\begin{gather*}
\tau_{i j}=-\left(\mu-\frac{\tau_{0}}{\sqrt{\frac{1}{2} \dot{e}_{l m} \dot{e}_{m l}}}\right) \dot{e}_{i j} \text { for } \frac{1}{2}\left(\tau_{i j} \tau_{j i}\right)>\tau_{0}^{2}, \tag{5}\\
\dot{e}_{i j} \equiv \frac{1}{2}\left(\frac{\partial v_{j}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)=0 \text { for } \frac{1}{2}\left(\tau_{i j} \tau_{j i}\right)<\tau_{0}^{2}, \tag{6}
\end{gather*}
$$

where τ_{0} is the yield of the liquid. From here on summation is performed on repeated indices. Substituting (5) into (3), we obtain after some calculations the equation

$$
\begin{equation*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{0}-P_{H}-\frac{2 \sigma}{R}-\frac{2}{3} \mu_{0} \frac{\dot{R}}{R}-\frac{4}{\sqrt{3}} \tau_{0} \ln \frac{H}{R} . \tag{7}
\end{equation*}
$$

To remove the divergence of the integral in (3), the upper limit of integration was replaced by the finite value $H \gg R$. As H, one can choose the width of the liquid layer.

A Power-Law Liquid.

$$
\begin{equation*}
\tau_{i j}=k\left|\frac{1}{2} \dot{e}_{m l} \dot{e}_{l m}\right|^{\frac{n-1}{2}} \dot{e}_{i J} \tag{8}
\end{equation*}
$$

where k and n are constants for a definite velocity interval, and

$$
\begin{equation*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{0}-P_{\infty}-\frac{2 \sigma}{R}-4 \mu_{0} \frac{\dot{R}}{R}-2 \cdot 3^{\frac{n-1}{2}}\left(\frac{2}{3 n}-1\right) k\left(\frac{\dot{R}}{R}\right)^{n} \tag{9}
\end{equation*}
$$

An Ellis Liquid.

$$
\begin{equation*}
\tau_{i j}=\left(\mu_{1}+\mu_{2}\left|\frac{1}{2} \dot{e}_{l m} \dot{e}_{m l}\right|^{\frac{\alpha-1}{2}}\right) \dot{e}_{i j} \tag{10}
\end{equation*}
$$

where μ_{1} and μ_{2} are the ordinary viscosity coefficients of shear flow and of transverse viscosity, and are constant for a certain velocity interval

$$
\begin{equation*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{0}-P_{\infty}-\frac{2 \sigma}{R}-\frac{10}{3} \mu_{1} \frac{R}{R}-2 \cdot 3^{\frac{\alpha-1}{2}}\left(\frac{2}{3 \alpha}-1\right) \mu_{2}\left(\frac{\dot{R}}{R}\right)^{\alpha} \tag{11}
\end{equation*}
$$

The equality $\mu_{0}=\mu_{1}$ was used in deriving (11).
A Reiner-Rivlin Liquid.

$$
\begin{equation*}
\tau_{i j}=\mu_{1}^{*} \dot{e}_{i j}+\mu_{2}^{*} \dot{e}_{i m} \dot{e}_{m j} \tag{12}
\end{equation*}
$$

In the general case $\mu_{i}^{*}=\mu_{i}^{*}\left(I_{2}, I_{3}\right)$, where $I_{2}=\sum_{i} \sum_{i}\left(\dot{e}_{\mathrm{ij}}\right)^{2}$ is a quadratic invariant tensor of velocity deformations, and $I_{3}=\operatorname{det} \dot{e}$. If $\mu_{i}^{*}=$ const, then

$$
\begin{equation*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{0}-P_{\infty}-\frac{2 \sigma}{R}-4 \mu_{0} \frac{\dot{R}}{R}+\frac{2}{3} \mu_{1}^{*}-\frac{\dot{R}}{R}-4 \mu_{2}^{*}\left(\frac{\dot{R}}{R}\right)^{2} \tag{13}
\end{equation*}
$$

The Rayleigh equation for this liquid is easily obtained also in the more general case $\mu_{i}^{*}=\mu_{i}^{*}\left(I_{2}, I_{3}\right)$ if the explicit dependence of the functional dependence of μ_{i}^{*} on I_{2} and I_{3} is known.

A Generalized Viscoplastic Shul'man Liquid [3].

$$
\begin{equation*}
\tau_{i j}=2\left(\frac{\tau_{0}^{\frac{1}{n}}}{A^{\frac{1}{m}}}+\mu^{\frac{1}{m}}\right) A^{\frac{n}{m}-1} \dot{e}_{i j}, A=\left(2 \dot{e}_{i j} \dot{e}_{j i}\right)^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

where A is the intensity of velocity deformation

$$
\begin{gather*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{0}-P_{\infty}-\frac{2 \sigma}{R}-4 \mu_{0} \frac{\dot{R}}{R}+\left(4-\frac{8}{3} \frac{m}{n-1}\right) \times \\
\times(2 \sqrt{3})^{\frac{n-m-1}{m}} \tau_{0}^{\frac{1}{n}}\left(\frac{\dot{R}}{R}\right)^{\frac{n-1}{m}}+\left(4-\frac{8}{3} \frac{m}{n}\right)(2 \sqrt{3})^{\frac{n-m}{m}} \mu^{\frac{1}{m}}\left(\frac{\dot{R}}{R}\right)^{\frac{n}{m}} \tag{15}
\end{gather*}
$$

A Nonlinear-Viscous Liquid [4].

$$
\begin{equation*}
\tau_{i j}=\Psi\left(I_{1}\right) B_{i i}, \quad B_{r r}=2 \frac{\partial v_{r}}{\partial r}, \quad I_{1}=4\left(\frac{\partial v_{r}}{\partial r}\right)^{2}+8\left(\frac{v_{r}}{r}\right)^{2} \tag{16}
\end{equation*}
$$

The Rayleigh equation is easily obtained by expression (3), having assigned an explicit form of the functional dependence $\Psi\left(I_{1}\right)$.

A Kapur-Gupta Liquid.

$$
\begin{equation*}
\tau_{i j}=\mu_{1} \dot{e}_{i j}+\mu_{2}\left(\dot{e}_{i j}\right)^{2}+\mu_{3}\left(\dot{e}_{i j}\right)^{3}+\ldots \tag{17}
\end{equation*}
$$

where $\mu_{i}=$ const. Confining ourselves to the third term in (17), we obtain the equation

$$
\begin{equation*}
\rho\left(R \ddot{R}+\frac{3}{2} \dot{R}^{2}\right)=P_{0}-P_{\infty}-\frac{2 \sigma}{R}-4 \mu_{0} \frac{\dot{R}}{R}+\frac{2}{3} \mu_{1} \frac{\dot{R}}{R}-\frac{8}{3} \mu_{2}\left(\frac{\dot{R}}{R}\right)^{2}+\frac{56}{9} \mu_{3}\left(\frac{\dot{R}}{R}\right)^{3} . \tag{18}
\end{equation*}
$$

Here one can put $\mu_{0}=\mu_{1}$.
An Oswald de Vielle Liquid.

$$
\begin{gather*}
\tau_{r r}=2 K I_{2}^{n-1} \frac{\partial v_{r}}{\partial r}, \quad I_{2}=\left(2 \dot{e}_{i j} \dot{e}_{j i}\right)^{\frac{1}{2}}, \tag{19}\\
\rho\left(R \ddot{R}+\frac{3}{2}-\dot{R}^{2}\right)=P_{0}-P_{\infty}-\frac{2 \sigma}{R}-4 \mu_{0} \frac{\dot{R}}{R}-4(2 \sqrt{3})^{n-1} K\left(\frac{\dot{R}}{R}\right)^{n}, \tag{20}
\end{gather*}
$$

The equations obtained can be used to determine the rheological constants in the non-Newtonian liquids considered, as well as in studying boiling processes on the basis of the mathematical model of growth of a gas bubble, suggested in [5].

LITERATURE CITED

1. V. S. Novikov, in: Thermal Physics and Technology [in Russian], No. 31, Naukova Dumka, Kiev (1976).
2. O. M. Yakhno and V. F. Dubovitskii, Basic Rheology of Polymers [in Russian], Visha Shkola, Kiev (1976).
3. Z. P. Shul'man, Convective Heat and Mass Transfer of Rheologically Complex Liquids [in Russian], Energiya, Moscow (1975).
4. V. G. Litvinov, in: The Problem of Heat and Mass Transfer [in Russian], Énergiya, Moscow (1970).
5. V. S. Novikov, Inzh. -Fiz. Zh., 30, No. 3 (1976).
